
,

PHYSICAL REVIEW E JANUARY 1997VOLUME 55, NUMBER 1
Correlation dimension of attractors through interspike intervals
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~Received 20 June 1996!

The question whether the correlation dimension of an experimental chaotic dynamical system can be deter-
mined from a series of spike timings produced by the system is considered. Two separate, biologically
motivated methods for generating spikes from the system are surveyed: an integrate-and-fire model and a
threshold-crossing method. Computational evidence indicates that the dimension can be determined in prin-
ciple under either method, assuming that the embedding dimension of the interspike interval attractor recon-
struction is greater than or equal to the correlation dimension of the attractor. The dependence of the dimension
statistics on the threshold level and the amount of available data is investigated.@S1063-651X~97!11001-7#

PACS number~s!: 05.45.1b, 87.10.1e
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Grassberger and Procaccia@1# formulated a method for
determining the correlation dimension of a chaotic attrac
of a system using a time series observed from the sys
The method is based on the idea of the geometric recons
tion of an attractor described earlier by Packardet al.. @2#,
Rouxet al. @3#, and others. Takens@4# proved a mathemati
cal theorem about the preservation of topology and geom
under time series reconstructions. Widespread dissemina
of these ideas led to use of nonlinear time series techniq
in many areas of science.

According to @5#, a delay coordinate reconstruction of
compact attractor from a time series is topologically equi
lent to the attractor for a probability-1 choice of measu
ment functions, as long as the embedding dimension
greater than twice the box-counting dimension of the attr
tor. This dimension requirement is overkill if the goal
simply to measure the attractor dimension. In@6#, it was
proved that a delay coordinate reconstruction of a comp
attractor from a time series has the same correlation dim
sion as the attractor for a probability-1 choice of measu
ment functions, assuming that the embedding dimensio
greater than or equal to the correlation dimension of the
tractor. Departure from this theory in practice should
traced to the lack of sufficient high-precision data or non
nericity of measurement functions.

In certain scientific areas, time series are not available
dynamical characterization. In some cases, data meas
from a dynamical process are collected as interevent timin
either because that form is more convenient or more re
sentative of the process. Biologists in general and neu
physiologists in particular often prefer to analyze sp
trains, although the preference is not limited to these ar
@7#. Recent laboratory experiments on control of irregu
behavior in biological systems have led to concentrated w
on the analysis of spike trains for the reliable detection
unstable periodic orbits in the underlying system@8#.

This paper is concerned with the following question: If
attractor can be measured only from series of spike tim
can its dimension be determined from the spike informat
alone? In the time series case, we quoted a result above
551063-651X/97/55~1!/287~4!/$10.00
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holds for time series resulting from generic measurem
functions. Although it is not always clear in practice what
generic time series is for a given underlying process, at le
there is a clear mathematical notion. It is not so obvio
even mathematically, what a generic spike train genera
from a process should mean. For that reason, we will sur
two different methods of generating spikes, and demonst
that, under either one, the correct correlation dimension
be inferred from spike train measurements.

The first of the two methods is a general integrate-and-
model. This method was shown in@9# to allow the full re-
construction of the dynamics using a delay embedding
interspike intervals~ISI’s!. A generic time series from a dy
namical system is integrated with respect to time; when
reaches a preset threshold, a spike is generated, after w
the integration is restarted. The second method is
threshold-crossing model. The times that a generic time
ries crosses a fixed threshold from below to above are
corded. Unlike the first method, time intervals betwe
threshold upcrossings will not be sufficient to reconstruct
attractor. In certain cases they may reconstruct a rough a
ogy to a Poincare´ section.

We begin by considering the integrate-and-fire hypo
esis. LetS(t) represent a signal produced by a function
the variables of a finite-dimensional dynamical system. A
sume that the trajectories of the dynamical system are
ymptotic to a compact attractor. LetQ be a positive number
which represents the firing threshold. After fixing a starti
timeT0, a series of ‘‘firing times’’T1,T2,T3,••• can be
recursively defined by the equation

E
Ti

Ti11
S~ t !dt5Q. ~1!

From the firing timesTi , the interspike intervals can be de
fined ast i5Ti2Ti21. Figure 1 shows a trace of thex coor-
dinate of the Lorenz attractor@10#, governed by the equa
tions
287 © 1997 The American Physical Society
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ẋ5a~y2x!,

ẏ5rx2y2xz, ~2!

ż52bz1xz,

where the parameters are set to the standard va
a510, r528, andb58/3, together with spiking times gen
erated by Eq.~1! whereS(t)5x(t)125 andQ510. This
choice forS(t) is representative. A wide range of positiv
functionsS(t) yielded results similar to those about to b
described. The thresholdQ, on the other hand, turns out t
be a critical parameter, and is discussed below in more de

The correlation dimensionD2 of an invariant measure o
a dynamical system is given by

D25 lim
r→0

lnC~r !

lnr
, ~3!

where the correlation integralC(r ) is defined to be the prob
ability that a pair of points chosen at random is separated
a distance less thanr . Let $x1 ,x2 , . . . ,xN% be the firstN
points of a trajectory which traces out the invariant measu
The correlation integral can be approximated by

C~N,r !5
2

N~N21!(j51

N

(
i5 j11

N

H~r2uxi2xj u!, ~4!

whereH is the Heaviside function defined asH(x)50 for
x<0, andH(x)51 for x.0, and u u denotes the distanc
norm. AsN goes to` , C(N,r ) goes toC(r ).

Given a sequence of ISI’s we can construct
m-dimensional space using delay coordinates and com
C(m,N,r ) according to Eq.~4! for a givenm. ~Here a pa-
rameterm is added to indicate the dimensionality of the r
construction space.! If the estimated valuesD̄2

(m) , plotted as

FIG. 1. The upper tracex(t) is thex coordinate of the Lorenz
attractor graphed as a function of time. The lower trace shows
times at which spikes are generated usingS(t)5x(t)125 and
Q510.
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a function ofm, appears to reach a plateau for a range
large enoughm, then the plateau dimension value is taken
be an estimate forD2.

In Fig. 2 we plot lnC(m,N,r) versus lnr for m53 to 8, and
N564 000. The ISI’s were generated using thex coordinate
of the Lorenz attractor, the signalS(t)5x(t)125 and
Q510. An optimized box-assisted algorithm for correlatio
dimension@11# was used to computeC(m,N,r ).

To estimateD2, Grassberger and Procaccia@1# suggest
that a ln-ln plot ofC(N,r ) versusr be constructed and tha
the estimation of the dimension, denoted byD̄2, be read off
as the slope of the curve over some range where the g
shows a linear dependence. A variant of this method w
suggested by Takens@12#. The Takens estimator requires th
choice of a single free parameterR0 as the upper cutoff
distance. All pairwise distances larger thanR0 are discarded,
and all distancesr which are less thanR0 are averaged ac
cording to

d5
21

^ ln~r /R0!&
. ~5!

This d is an estimate forD2. We report results using the
Takens estimator of dimension as a way of making our c
clusions less sensitive to choice of scaling region in the
termination of dimension, in particular for cases that are l
clear cut than Fig. 2.

An important issue to be considered for ISI’s fro
integrate-and fire dynamics is the effect of the size of
threshold in the reconstruction. As the threshold increa
the length of time spanned by an ISI vector grows, and de
rrelation due to sensitive dependence can damage the re
struction. To see this we compute the correlation dimens
of ISI series generated with the Lorenz equations using
ferent thresholds.

In Fig. 3,D̄2
(m) is plotted versusm for Q510 and 50. The

signal and trajectory used are the same as in Fig. 2. We u
the Takens estimator to computeD̄2

(m) with R0 equal to one-
half of one percent of the diameter of the reconstructed

e
FIG. 2. Ln-ln plot of the correlation integrals of the Lorenz IS

@signal S(t)5x(t)125, Q510# for m53–8. The top line is for
m 5 3, the bottom linem 5 8.
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55 289CORRELATION DIMENSION OF ATTRACTORS THROUGH . . .
tractor. We were able to reconstruct the Lorenz attractor
mension usingQ510, but not withQ550. As shown in the
graph, withQ510 ~diamonds!, the plot reaches a platea
close to the Lorenz correlation dimension 2.06. This is
the case forQ550. Increasing the threshold by a factor
5 results in an increase in the mean interspike interval b
factor of roughly 5. Referring to Fig. 1, whereQ510, one
concludes that the system moves through many oscillat
during each ISI whenQ550. Since the Lorenz attractor ha
a Lyapunov exponent of approximately 0.9, informati
about the original system state is lost after only one or t
spike intervals. At the precision with which the ISI’s we
measured in this study, useful information about the attra
is not reproduced in the reconstruction. This problem
ISI’s is exactly analogous to the effect of large time dela
when reconstructing an attractor from time series.

The second method for generating a spike sequence
record the time intervals between successive, upward-g
level crossings of a fixed amplitude thresholdQ. Figure 4
shows thexy projection of the Ro¨ssler attractor@13#, gov-
erned by the equations

FIG. 3. Dimension estimates of integrate-and-fire Lorenz sys
measured from interspike intervals, as a function of embedding
mensionm. Takens estimator withR050.5 % of diameter is used
The diamond symbols mark dimension estimator for thresh
Q510; squares mark thresholdQ550.

FIG. 4. An xy projection of the Ro¨ssler attractor. The lines
x52 and23 represent possible firing thresholdsQ.
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ẏ5x1ay, ~6!

ż5b1~x2c!z,

where the parameters are set to the standard va
a50.36, b50.4, c54.5, together with the linesx52 and

m
i-

d

FIG. 5. The upper trace is thex coordinate of the Ro¨ssler attrac-
tor graphed as a function of time. The lower trace shows the tim
at which threshold crossings are generated usingQ52.

FIG. 6. Dimension estimates of Ro¨ssler system measured from
threshold-crossing interspike intervals, using Takens estimator.
diamond, square, and triangle symbols correspond to ISI sequ
lengths 64 000, 16 000, and 4000, respectively. The threshold
the x variable are~a! Q52 and~b! Q523.
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290 55ROLANDO CASTRO AND TIM SAUER
23. Figure 5 shows a trace of thex coordinate of the Ro¨ssler
attractor, together with the threshold crossings usingQ52.

Interspike intervals created by threshold crossings o
system measurement cannot be used to reconstruct the
derlying attractor in the sense of@9#. Instead, these ISI’s
measure the times between piercings of a Poincare´ surface of
section. We conjecture that vectors consisting ofm succes-
sive interspike intervals created in this way will generica
comprise a set of dimension exactly one less than the at
tor dimension.

Computational evidence of this conjecture is shown
Fig. 6~a!, which shows dimension estimates, using the T
ens estimator as above, for threshold-crossing ISI’s w
Q52. As shown by Fig. 5, this threshold is chosen so t
firing occurs with the great majority of the oscillations of th
underlying attractor. The dimension estimates are close
1; for the diamonds shown in Fig. 6~a!, representing the
dimension calculation using 64 000 interspike intervals,
dimension estimate is 1.01, essentially equal to one less
the correlation dimension of the Ro¨ssler attractor. When
fewer than 64 000 intervals are used, the dimension estim
degrades in accuracy. The squares and triangles in Fig.~a!
represent the dimension estimates for 16 000 and 4000 in
vals, respectively.

The alternate thresholdQ523 in Fig. 4 leads to quite a
different result. As can be seen from either Fig. 4 or 5, ma
of the smaller oscillations will now be missed by th
threshold-crossing method. Although our conjecture is t
in theory the correct dimension can be found from the
ISI’s, in practice the data requirements are difficult to satis
The likely cause of the difference between thresho
hy
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Q52 and23 is that the latter produces fewer spikes p
unit time, because small oscillations are missed. For a fi
embedding dimension, the length of dynamical time span
by a reconstructed ISI vector becomes comparable with
decorrelation time of the chaotic system, which has the ef
of degrading the attractor reconstruction. Figure 6~b! shows
the resulting inaccuracy in the dimension estimate. This
perhaps consistent with the findings of Preissl, Aersten,
Palm @14#, who reported difficulty in obtaining the correc
correlation dimension of the Lorenz attractor from thresh
crossings, possibly due to this decorrelation effect. In t
study, 5000 ISI’s were used in the dimension calculation

Taken collectively, these results show that there is
theoretical obstruction to computing correlation dimens
from a single spike train measured from experiment. O
methods for producing spikes from underlying dynam
were necessarily limited in scope. Real experimental syst
are certain to be much more complex in detail, and poss
not well represented by either integrate-and-fire or thresh
crossing mechanisms. The contribution of this report is
show what happens under ideal circumstances, given s
cient accurately-measured data. We also showed that dim
sion calculations from ISI’s in practice are highly depende
on the details of the firing threshold. In a typical experime
lack of control over this parameter could conceivably ma
an accurate dimension estimation extremely difficult.

The research of both authors was supported in part by
National Science Foundation~Computational Mathematics
and Physics programs!.
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