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Correlation dimension of attractors through interspike intervals
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The question whether the correlation dimension of an experimental chaotic dynamical system can be deter-
mined from a series of spike timings produced by the system is considered. Two separate, biologically
motivated methods for generating spikes from the system are surveyed: an integrate-and-fire model and a
threshold-crossing method. Computational evidence indicates that the dimension can be determined in prin-
ciple under either method, assuming that the embedding dimension of the interspike interval attractor recon-
struction is greater than or equal to the correlation dimension of the attractor. The dependence of the dimension
statistics on the threshold level and the amount of available data is investifa1€®3-651X97)11001-7

PACS numbd(ps): 05.45+b, 87.10+e

Grassberger and Procacdif] formulated a method for holds for time series resulting from generic measurement
determining the correlation dimension of a chaotic attractofunctions. Although it is not always clear in practice what a
of a system using a time series observed from the systengeneric time series is for a given underlying process, at least
The method is based on the idea of the geometric reconstruthere is a clear mathematical notion. It is not so obvious,
tion of an attractor described earlier by Packatdal. [2], ~ even mathematically, what a generic spike train generated
Rouxet al. [3], and others. Taker{g}] proved a mathemati- from a process should mean. For that reason, we will survey
cal theorem about the preservation of topology and geometriyvo different methods of generating spikes, and demonstrate
under time series reconstructions. Widespread disseminatidhat, under either one, the correct correlation dimension can
of these ideas led to use of nonlinear time series techniqud¥ inferred from spike train measurements.
in many areas of science. The first of the two methods is a general integrate -and-fire

According to[5], a delay coordinate reconstruction of a model. This method was shown f8] to allow the full re-
compact attractor from a time series is topologically equivaonstruction of the dynamics using a delay embedding of
lent to the attractor for a probability-1 choice of measure-interspike intervalgISI’'s). A generic time series from a dy-
ment functions, as long as the embedding dimension i§amical system is integrated with respect to time; when it
greater than twice the box-counting dimension of the attracteéaches a preset threshold, a spike is generated, after which
tor. This dimension requirement is overkill if the goal is the integration is restarted. The second method is a
simply to measure the attractor dimension.[B], it was threshold-crossing model. The times that a generic time se-
proved that a delay coordinate reconstruction of a compadi€s crosses a fixed threshold from below to above are re-
attractor from a time series has the same correlation dimerforded. Unlike the first method, time intervals between
sion as the attractor for a probability-1 choice of measurethreshold upcrossings will not be sufficient to reconstruct the
ment functions, assuming that the embedding dimension igttractor. In certain cases they may reconstruct a rough anal-
greater than or equal to the correlation dimension of the atogy to a Poincareection.
tractor. Departure from this theory in practice should be We begin by considering the integrate-and-fire hypoth-
traced to the lack of sufficient high-precision data or nonge£sis. LetS(t) represent a signal produced by a function of
nericity of measurement functions. the variables of a finite-dimensional dynamical system. As-

In certain scientific areas, time series are not available fopume that the trajectories of the dynamical system are as-
dynamical characterization. In some cases, data measurgnptotic to a compact attractor. L& be a positive number
from a dynamical process are collected as interevent timinggyhich represents the firing threshold. After fixing a starting
either because that form is more convenient or more reprdime Ty, a series of “firing times"T;<T,<T3<--- can be
sentative of the process. Biologists in general and neuroecursively defined by the equation
physiologists in particular often prefer to analyze spike
trains, although the preference is not limited to these areas
[7]. Recent laboratory experiments on control of irregular JTiHS(t)dt=® 1)
behavior in biological systems have led to concentrated work ’
on the analysis of spike trains for the reliable detection of
unstable periodic orbits in the underlying systEsi

This paper is concerned with the following question: If an From the firing timesT;, the interspike intervals can be de-
attractor can be measured only from series of spike timedjned ast;=T;—T;_4. Figure 1 shows a trace of thecoor-
can its dimension be determined from the spike informatiordinate of the Lorenz attractdiO], governed by the equa-
alone? In the time series case, we quoted a result above thiibns
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FIG. 1. The upper tracg(t) is thex coordinate of the Lorenz FIG. 2. Ln-In plot of the correlation integrals of the Lorenz ISI

attractor graphed as a function of time. The lower trace shows thgsignal S(t) =x(t) + 25, ® =10] for m=3-8. The top line is for
times at which spikes are generated usiB@)=x(t)+25 and m = 3, the bottom linem = 8.
0 =10.
a function ofm, appears to reach a plateau for a range of
X=a(y—Xx), large enougtm, then the plateau dimension value is taken to
be an estimate foD,.
In Fig. 2 we plot IlC(m,N,r) versus Im for m=3 to 8, and
N=64 000. The ISI's were generated using theoordinate
of the Lorenz attractor, the signab(t)=x(t)+25 and
z=—Bz+xz ©®=10. An optimized box-assisted algorithm for correlation
dimension[11] was used to comput€(m,N,r).
where the parameters are set to the standard values TO estimateD,, Grassberger and Procacdif] suggest
=10, p=28, andB=8/3, together with spiking times gen- that a In-In plot ofC(N,r) versusr be constructed and that
erated by Eq.(1) where S(t)=x(t)+25 and®=10. This the estimation of the dimension, denotedy, be read off
choice forS(t) is representative. A wide range of positive as the slope of the curve over some range where the graph
functions S(t) yielded results similar to those about to be shows a linear dependence. A variant of this method was
described. The threshol@, on the other hand, turns out to suggested by Taken&2]. The Takens estimator requires the
be a critical parameter, and is discussed below in more detaithoice of a single free paramet&®, as the upper cutoff
The correlation dimensioB, of an invariant measure of distance. All pairwise distances larger trfanare discarded,

y=pX—y—Xz, (2)

a dynamical system is given by and all distances which are less thaR, are averaged ac-
cording to
_InC(r)
D,=Ilim i (3) -1
e o TRy ©

where the correlation integrél(r) is defined to be the prob- . . . .
ability that a pair of points chosen at random is separated b his d is an estimate foD,. We report results using the

a distance less than. Let {x;,X; %) be the firstN akens estimator of dimension as a way of making our con-
points of a trajectory which traces out the invariant measureS!uSions less sensitive to choice of scaling region in the de-
The correlation integral can be approximated by termination of dimension, in particular for cases that are less

clear cut than Fig. 2.
N N An important issue to be considered for ISI's from
E 2 H(r—|x—xi) (4) integrate-and fire dynamics is the effect of the size of the
)=t 5] b threshold in the reconstruction. As the threshold increases,
the length of time spanned by an ISl vector grows, and deco-
whereH is the Heaviside function defined &ix)=0 for rrelation due to sensitive dependence can damage the recon-
x=<0, andH(x)=1 for x>0, and|| denotes the distance struction. To see this we compute the correlation dimension
norm. AsN goes to , C(N,r) goes toC(r). of ISI series generated with the Lorenz equations using dif-
Given a sequence of ISI's we can construct anferentthresholds.
m-dimensional space using delay coordinates and compute In Fig. 3, D(m) is plotted versusn for ® =10 and 50. The
C(m,N,r) according to Eq(4) for a givenm. (Here a pa- signal and trajectory used are the same as in Fig. 2. We used
rameterm is added to indicate the dimensionality of the re- the Takens estimator to compu])ém) with Ry equal to one-
construction spacglf the estimated valueﬁ(m), plotted as half of one percent of the diameter of the reconstructed at-

C(N,r)= N(N 1



55 CORRELATION DIMENSION OF ATTRACTORS THROUS . .. 289

25 T T T T T 15
01}
E . 10f
[a) g 9 0
5 oo
g T i 5t
L
z =
8 o0
(]
15 1 1 1 1 1 $Y3
2 3 4 5 6 7 8 5t
Embedding Dimension -
FIG. 3. Dimension estimates of integrate-and-fire Lorenz system  —10
measured from interspike intervals, as a function of embedding di-
mensionm. Takens estimator witlRy=0.5 % of diameter is used. _15 , , ‘ , )
The diamond symbols mark dimension estimator for threshold 0 10 20 30 40 50 60
0 =10; squares mark threshot@=50. Time

W bl he L di FIG. 5. The upper trace is thecoordinate of the Resler attrac-
tractor. We were able to reconstruct the Lorenz attractor 'for graphed as a function of time. The lower trace shows the times

mension using) = 10, but not with® =50. As shown in the 4t which threshold crossings are generated uging?.
graph, with® =10 (diamonds, the plot reaches a plateau

close to the Lorenz correlation dimension 2.06. This is not X= —(y+2),

the case foi® =50. Increasing the threshold by a factor of

5 results in an increase in the mean interspike interval by a y=x+ay, (6)
factor of roughly 5. Referring to Fig. 1, whef@=10, one

concludes that the system moves through many oscillations z=b+(x—¢)z,

during each ISI whe® =50. Since the Lorenz attractor has

a Lyapunov exponent of approximately 0.9, informationwhere the parameters are set to the standard values
about the original system state is lost after only one or tw@@=0.36, b=0.4, c=4.5, together with the lineg=2 and
spike intervals. At the precision with which the ISI's were

measured in this study, useful information about the attractor 16 L B
is not reproduced in the reconstruction. This problem for (a)
ISI's is exactly analogous to the effect of large time delays g l4r -
when reconstructing an attractor from time series. A
The second method for generating a spike sequence is to g 12 b |
record the time intervals between successive, upward-going % ’
level crossings of a fixed amplitude threshd&d Figure 4 g A
shows thexy projection of the Resler attractof13], gov- © 1F g7
erned by the equations
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_1_%0 _é o 5 1'0 1'5 FIG. 6. Dimension estimates of Bsler system measured from
X threshold-crossing interspike intervals, using Takens estimator. The

diamond, square, and triangle symbols correspond to ISI sequence
FIG. 4. An xy projection of the Resler attractor. The lines lengths 64 000, 16 000, and 4000, respectively. The thresholds in
x=2 and—3 represent possible firing threshol@s the x variable arg@) ®=2 and(b) @ =—3.
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— 3. Figure 5 shows a trace of thecoordinate of the Resler ©®=2 and —3 is that the latter produces fewer spikes per
attractor, together with the threshold crossings uging2. unit time, because small oscillations are missed. For a fixed
Interspike intervals created by threshold crossings of @&mbedding dimension, the length of dynamical time spanned
system measurement cannot be used to reconstruct the usy a reconstructed ISI vector becomes comparable with the
derlying attractor in the sense ¢8]. Instead, these ISI's decorrelation time of the chaotic system, which has the effect
measure the times between piercings of a Poinsarface of  of degrading the attractor reconstruction. Figufk) Ghows
section. We conjecture that vectors consistingrobucces-  the resulting inaccuracy in the dimension estimate. This is
sive interspike intervals created in this way will generically perhaps consistent with the findings of Preiss|, Aersten, and
comprise a set of dimension exactly one less than the attrag )y, [14], who reported difficulty in obtaining the correct
tor d'me”S'oﬂ- . . : ) __correlation dimension of the Lorenz attractor from threshold
Computational evidence of this conjecture is shown Incrossings, possibly due to this decorrelation effect. In that

Fig. 6(@), which shows dimension estimates, using the Ta 'study, 5000 ISI's were used in the dimension calculation.

ens estimator as above, for threshold-crossing ISI's with Taken collectively, these results show that there is no

®=2. As shown by Fig. 5, this threshold is chosen so tha : . . . . .
firing occurs with the great majority of the oscillations of the ?Sﬂ?g'?g}gﬁgi’;ﬁ?g;ﬂ f:ggttr'gg fﬁg:;elzgggriﬂginsc')o;

underlying attractor. The dimension estimates are close t . . ' .
1; for the diamonds shown in Fig.(#, representing the methods for producing spikes from underlying dynamics
Jvere necessarily limited in scope. Real experimental systems

dimension calculation using 64 000 interspike intervals, th A ] k :
dimension estimate is 1.01, essentially equal to one less th4H€ certain to be much more complex in detail, and possibly

the correlation dimension of the "Beler attractor. When Not well represented by either integrate-and-fire or threshold-
fewer than 64 000 intervals are used, the dimension estimaf@©ssing mechanisms. The contribution of this report is to
degrades in accuracy. The squares and triangles in Fay. 6 Show what happens under ideal circumstances, given suffi-
represent the dimension estimates for 16 000 and 4000 integi€nt accurately-measured data. We also showed that dimen-
vals, respectively. sion calculations from ISI's in practice are highly dependent

The alternate threshol® = —3 in Fig. 4 leads to quite a on the details of the firing threshold. In a typical experiment,
different result. As can be seen from either Fig. 4 or 5, manyack of control over this parameter could conceivably make
of the smaller oscillations will now be missed by the an accurate dimension estimation extremely difficult.

threshold-crossing method. Although our conjecture is that )
in theory the correct dimension can be found from these The research of both authors was supported in part by the

ISI's, in practice the data requirements are difficult to satisfy National Science FoundatiofComputational Mathematics
The likely cause of the difference between threshold€tnd Physics programs
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